
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013                                                                    1715 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

 Robust Coefficients of Determination: A Measure of 
Goodness of Fit 
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 Abstract— Various statistical methods, the R-square, modified R-square and adjusted R-square are the classical estimators for a wide range of 
commonly using measures of goodness of fit. They are however unreliable in presence of outliers. This paper proposes a new approach to robust 
modification of the coefficients of determination (RR-square). In this paper, I briefly review some of the more fundamental advantages and disad-
vantages with conventional as well as propose measure by utilizing a real data sets as well as Monte Carlo simulation. The proposed statistic is 
relatively good power than the classical measures for different sample sizes. 

 
Index Terms— adjusted R-square, MR-square, R-square, RR-square, Simulation    

——————————      —————————— 

1 INTRODUCTION                                                                     

HE coefficient of determination ( 2R ) is one of the most 
popular goodness-of-fit tests employed in regression, eco-

nomics, econometric and etc. The 2R  measures the information 
of the proportion or percentage of the total variation in Y ex-
plained by the regression model. Two properties of 2R  may be 
noted: (i). It is a nonnegative quantity and (ii) its limits are 

10 2 ≤≤ R [7 and 9] to name but a few. The main drawback 
of 2R : if we add a regressor variable to the model, 2R increas-
es [13]. But this does not mean the new model is superior to 
the old one. The theoretical and practical consequences of 2R , 
modified- 2R ( 2MR ) and adjusted- 2R ( 2

R ) have been docu-
mented in several books [5, 10, 11, 15 and 17] and journal arti-
cles [1, 2 and 16]. According to model selection criteria, we use 
all measures of goodness of fit as well as AIC and SIC, have 
already been studied extensively in the literature [3, 4, 8, 12 
and 14]. All of these measures are based on 2R . For this rea-
son, I make a new and simple measure of goodness of fit. I 
label it the robust coefficients of determination ( )2RR , which is 
introduced in section 2. The properties of these classical and 
new measures are illustrated in section 3 with real life data 
sets. The performance of the classical and proposed 2RR  is 
investigated in section 4 through a Monte Carlo simulation 
experiment. 

2. PROPOSE ROBUST COEFFICIENTS OF DE-
TERMINATION 

Let us now consider the regression line as a whole and exam-
ine its goodness of fit: eXY ++= βα . Suppose a sample re-
gression line has been obtained by the method of least squares.  
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leads to a measure of the ‘goodness of fit’- which is known as 
coefficient of determination and symbolized as 2R . 
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This is the required classical measure of goodness of fit.  
The corresponding robust coefficient of determination ( )2RR  
is given as follows: 
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Where the constant d is selected to obtain a consistent estima-
tor forσ , and equals d=2.219 at a normal model distribution.  
 

It is easy to see in (1) that limits of 2RR  is zero and unity. If 
our fit is perfect, eφ  equal to zero as well as 2RR  equal to uni-
ty; indicating the best fit. At the other extreme if our estimated 
sample regression line is horizontal ( )0=β , then 

ye φφ =  as well 
as 2RR  equal to zero. Thus, 10 2 ≤≤ RR . 

3. EMPERICAL EXAMPLES  

The well known data set consists of a research engineer is in-
vestigating the use of a windmill to generate electricity. He has 
collected data on the DC output from his windmill and the 
corresponding wind velocity (n=25), which has taken from 
[13]. Checking the goodness of fit of the fitted regression line 
to a set of data, that is, I will find out how well the sample re-
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gression line fits the data. Next checking the outliers by the 
robust LTS method; it can detect 3 outliers (case 4, 8 and 25). 
Original data set and deleting these outliers, I recheck the ap-
propriate model of the data sets, which results has shown be-
low: 
 
TABLE 1: PERFORMANCE OF DIFFERENT MEASURES FOR APPRO-

PRIATE MODEL SELECTION 
Model  
Selection  
Criteria 

Data 
Type 

Linear 
Model 

Quadratic 
Model 

Cubic 
Model 

Reciprocal 
Model 

 

  2R  
WO 0.874 0.907 0.986 0.980 
WOO 0.902 0.967 0.969 0.965 

 

  2MR  
WO 0.804 0.851 0.863 0.841 
WOO 0.820 0.835 0.854 0.878 

 

   2
R  

WO 0.869 0.914 0.973 0.969 
WOO 0.897 0.964 0.965 0.963 

 

   AIC 
WO 0.060 0.016 0.013 0.020 
WOO 0.027 0.011 0.010 0.009 

 

    SIC 
WO 0.066 0.019 0.016 0.019 
WOO 0.029 0.011 0.012 0.010 

 

   2RR  
WO 0.834 0.796 0.881 0.900 
WOO 0.793 0.790 0.870 0.883 

[Note: WO: With Outliers, WOO: Without Outliers] 
 

From TABLE 1, shows an important property of 2R , 2MR  and 
2

R  is that its are nondecreasing function as well as the proper-
ty of AIC and SIC is that its are nonincreasing function when 
the number of explanatory variables or regressors added in 
the model but except 2RR . If the value of 2RR decreases for 
adding regressors in the model, former model may correct or 
taking another form of models for appropriate selection. No-
tice that, when no outliers occurs in the data, the 2MR , AIC and 
SIC select the appropriate model. But, the only newly pro-
posed measures of coefficient of determination ( )2RR  select 
the correct model when a small percentage of outliers are pre-
sent or absent in the data set.  According to [13], the reciprocal 
transformation model is appropriate for aforesaid data set.  

 
As another example, I consider a famous data set found in [6] 
refers to the per capita consumption of cigarettes in various 
countries in 1930 and the death rates (number of deaths per 
million people)  from lung cancer for 1950 (n=11). Checking 
the goodness of fit of the fitted regression line to a set of data, 
that is, I will find out how well the sample regression line fits 
the data. Next checking the outliers by the robust LTS method; 
it can detect 1 outlier (case 11). Actual data set and deleting 
these outliers, I revisit the appropriate model of the data sets, 
which results have shown in TABLE 2. 
 
 
 
 
 
 

TABLE 2: PERFORMANCE OF DIFFERENT MEASURES FOR SUITABLE 
MODEL SELECTION 

Model  
Selection  
Criteria 

Data 
Type 

Linear 
Model 

Quadratic 
Model 

Cubic 
Model 

Reciprocal 
Model 

 

  2R  
WO 0.544 0.774 0.899 0.654 
WOO 0.888 0.905 0.906 0.799 

 

  2MR  
WO 0.444 0.563 0.572 0.535 
WOO 0.543 0.633 0.711 0.639 

 

   2
R  

WO 0.492 0.718 0.856 0.615 
WOO 0.874 0.878 0.879 0.773 

 

   AIC 
WO 8203 4862 2605 6214 
WOO 2279 2374 2861 4123 

 

    SIC 
WO 8819 5419 3010 6680 
WOO 2422 2600 3229 4381 

 

   2RR  
WO 0.816 0.748 0.802 0.730 
WOO 0.837 0.754 0.767 0.757 

 
[Note: WO: With Outliers, WOO: Without Outliers] 
 
From TABLE 2, when no outlier occurs in the data set, AIC 
and SIC select the correct model. But, the newly proposed 2RR  
is 
most efficient measures of goodness of fit when an outlier pre-
sent in the data set or absent in the data set. According to [6], 
linear model (LM) is appropriate for this data set. 

4. REPORT OF MONTE CARLO SIMULATION 
In this section, I discuss a Monte Carlo simulation study which 
is planned to evaluate the performance of the newly pro-
posed 2RR with five other popular and frequently used model 
selection criteria, i.e., the 2R , 2MR , 2

R , AIC and SIC. In order to 
compare the appropriate model identification power perfor-
mance of 2R , 2MR , 2

R , AIC, SIC and 2RR , I simulate artificial 
data sets. So that, I find out from them who can caught the 
right model. The following procedures are as follows: I simu-
late data based on one model and run the data sets four afore-
mentioned models as well as compare the percentage which 
measure can detect the correct model how many times. Firstly, 
I simulate linear model (LM) data and generating samples 
from uniform distribution. Next, I simulate quadratic model 
(QM) data and generating samples from same distribution. 
Again then, I simulate cubic model (CM) data and generating 
samples from aforesaid distribution. And then, I simulate re-
ciprocal model (RM) data and generating samples from 
aforementioned distribution. In my simulation experiment, I 
have taken different sample sizes, n=50, 100, 200 and 500. Each 
experiment is run 10,000 times and the outcomes are given 
TABLE 3.    
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TABLE 3 POWER PERFORMANCE COMPARISONS OF DIFFERENT 
MODEL SELECTION CRITERIA 

 
              Power (in percentage) 

Model  
Selection 
Criteria 

Linear 
Model 

Quadratic 
Model 

Cubic  
Model 

Reciprocal 
Model 

  n=50   
2R  0 0 100 13.90 

2MR  0 0 100 13.90 
2

R  0 0 100 13.90 
AIC 0 0 100 18.15 
SIC 0 0 100 18.15 

2RR  100 100 100 100 
  n=100   

2R  0 0 100 16.81 
2MR  0 0 100 16.81 

2
R  0 0 100 16.81 
AIC 0 0 100 19.26 
SIC 0 0 100 19.26 

2RR  100 100 100 100 
  n=200   

2R  0 0 100 21.59 
2MR  0 0 100 21.59 

2
R  0 0 100 21.59 
AIC 0 0 100 25.98 
SIC 0 0 100 25.98 

2RR  100 100 100 100 
  n=500   

2R  0 0 100 29.09 
2MR  0 0 100 29.09 

2
R  0 0 100 29.09 
AIC 0 0 100 36.89 
SIC 0 0 100 36.89 

2RR  100 100 100 100 
 

From TABLE 3 shows that the right model selection perfor-
mance of 2R , 2MR , 2

R , AIC and SIC are necked zero for linear 
and quadratic models in different sample sizes. But correct 
model detection power of aforesaid tools is perfect for cubic 
model as well as identification power is very poor for recipro-
cal model in different samples. Alternatively, the correct mod-
el declaration power of my newly propose coefficient of de-
termination ( )2RR  is perfect for all models in different samples. 
Therefore, I can say that my newly proposed tool 2RR is batter 
than any other techniques for exact model identification. 

   

  5. CONCLUSION 
  In this paper, shows that the proposed measure 2RR appears to 
perform much better than the other measures of coefficient of 
determination for appropriate model selection. This technique 
has very good power against a variety of sizes and is capable 
of clear-cut selection of accurate model in regression and other 
applications. However, both the real data sets and simulation 

study demonstrate that the robust coefficient of determination 
( )2RR  is more accurate measure in a variety of situations. 
Since 2RR  perform superbly here and hence can be recom-
mended to use an effective measure of goodness of fit. 
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